
High-Accuracy Timing
by Brian Frost

There is often a requirement for
PC timing information or de-

lays in the range of 10 microsec-
onds to 100 milliseconds, and
although one would think that this
should be simple, obtaining such
timing information is actually
extremely difficult.

While short delays can be ob-
tained using processor instruc-
tions or count loops and long
delays can be created from the
18Hz clock tick or the real-time
clock, there is no readily available
method for obtaining accurate
‘intermediate’ delays that work for
all targets. Such delays are useful
for generating hardware pulses by
combining a delay with toggling an
I/O line, or for creating tests for a
response time-out by using a maxi-
mum number of repeated calls to a
test function, with a rate controlled
by a fundamental short delay.
Some programmers will have used
the Delay(Milliseconds) procedure
in the Borland Pascal 7 (BP7) CRT
unit in this way and are often
surprised to find that no such call
exists in Delphi.

On other platforms it can be
quite easy to fabricate your own
delay. A common method that goes
back to the earliest days of the mi-
croprocessor is to use nested
count loops that give a known de-
lay based on the counts and the
clock speed of the processor. Such
methods are still regularly used in
many single-chip microprocessor
applications where a fixed crystal
clock exists. Unfortunately on the
PC platform this is not a good solu-
tion due to the wide variety of proc-
essor speeds, other interleaved
system activity and the require-
ment that CPU time should not be
‘wasted’ in a multi-tasking environ-
ment. In spite of this I maintain that
there is still a need to be able to
implement short, accurate delays,
as long as they are used with care.

This article sets out to explain
the various methods of obtaining
timing and delays on the PC under

DOS and Windows and their vari-
ous limitations and benefits. In par-
ticular it concentrates on obtaining
these ‘intermediate’ times in the
range 10 microseconds to 100 mil-
liseconds. It provides a solution to
those who miss a Delay function in
Delphi and derives a general pur-
pose unit that works all the way
from BP7 right through to 32-bit
Delphi and offers accurate time
measurement and delays with a
resolution of better than 1 micro-
second. The article then develops
this short time measurement to
create a useful generic low-level
execution profiling tool for testing
program speed and performance.

PC Timing Options
The PC is a difficult platform upon
which to obtain high resolution
timing since its basic hardware
timer capability was really only
designed to provide a series of
interrupts that would keep the dy-
namic RAM refreshed and to gener-
ate a fixed tick at about 18Hz to
maintain a software time-of-day
clock. A third timer channel is
actually available, but only in situ-
ations where the operating system
permits it. There are a number of
ways in which a programmer can
obtain timing information, but
each has various limitations and
benefits as described in the follow-
ing sections.

DOS Real And Protected Mode
Under MSDOS some standard ab-
solute time functions are available
in the BIOS services, but these are
limited in resolution to one clock
tick of approximately 55ms (18Hz).
Since these functions are linked to
the requirements of system and file
times and dates, they are ideal for
longer delays but of little use for
short delays. It is possible to use
the spare timer channel on the PC
timer from your program to obtain
flexible and high-resolution abso-
lute or relative timing, but you
must program it directly and re-

store it on exit, since other pro-
grams (like games) will often be
using this same technique. A good
example of this is in OPTIMER.PAS
(see the note at the end of the
article).

To avoid tying up timer hard-
ware, many programs implement
timing delays by using processor
count loops that convert the re-
quired number of microseconds or
milliseconds into a count via a pre-
calibrated delay factor CountsPer-
Millisecond. An example of this is
the Borland Delay(Millisec) proce-
dure in the BP7 CRT unit. This solu-
tion works well unless the final DOS
program is run as a task under Win-
dows, where the multitasking proc-
esses can affect the initial
calibration at program start or the
actual delays themselves. Nowa-
days, of course, this is usually the
case.

Windows
There is similarity between the
DOS time-of-day functions and
those available in the Windows
API, but again these are limited in
resolution depending on the ver-
sion of Windows being used.
Windows 3.X is limited to one clock
tick of 55ms but Windows 95 im-
proves this to 1ms. A popular
method for obtaining timing under
Windows is to use GetTickCount
which returns the number of milli-
seconds that has elapsed since
Windows was started, but the
limited resolution prevents short
delays from being created.

This same Windows tick resolu-
tion applies to any Windows timer
that can be assigned to your pro-
gram (eg the Delphi TTimer), but
trying to implement delays with
these timers is even less accurate
since they are message based and
so only really useful for events oc-
curring at several 100s of millisec-
onds. An added limitation is that
unrestrained use of these timers is
discouraged as they are a limited
resource under 16-bit Windows.

June 1997 The Delphi Magazine 29

I work on DOS real and protected
mode programs that now have to
run under Windows and for some
time I used the BP7 Delay proce-
dure for my short delays. However,
I noticed that although the pro-
gram worked fine out of Windows,
when run under Windows some-
times the actual delay was not con-
sistent. The Delay procedure uses
a software calibration loop to
determine the scale factor (counts
per millisecond) that is sub-
sequently used to convert your re-
quired delay into a processor wait
loop. This technique works fine to
within about 2% under DOS only.
When the same code is run as a
DOS task under Windows, it seems
that the calibration loop can be in-
terrupted by Windows and gets the
scale factor wrong about 1 time in
20 or 30. Since the calibration loop
is only executed once at the start
of the program, such an error can
be quite serious and attempts to
check the calibration against abso-
lute timing, such as the clock tick,
do help but are slow and still not
foolproof. Windows 95 actually
seems to make matters worse since
it is much more intensive in steal-
ing time away from DOS tasks, so
creating longer holes in the CPU
time that is made available to such
calibration loops.

Under Windows the spare timer
channel is a valuable operating sys-
tem resource that must not (cannot
in fact) be directly accessed, since
Windows uses it to control its own
internal timing.

General Purpose
High-Res Timing
I write and support code for vari-
ous Pascal based targets, ranging
from self-contained MSDOS appli-
cations written using BP7 with
their own menu system, or based
on Turbo Vision, through to more
recent 16-bit or 32-bit Windows
applications written in Delphi. My
task is often made more complex
because some of my Pascal code
has to be shared between all tar-
gets, including requirements for
(say) a 1ms delay. Until recently I
had got around these require-
ments by a mixture of GetTickCount
type timing for delays of a few 100

ms or more, processor count loops
for short non-accurate delays and
direct hardware access to my own
system-specific hardware timers
for the really accurate short de-
lays. My real Holy Grail, though,
has always been a general purpose
high resolution timing unit that
could be used under all of these
compilers to provide a set of
simple delay procedures.

I decided to see if it was possible
get at the PC hardware timer under
all operating system modes and my
starting point was TurboPower’s
OPTIMER.PAS (see note at end).
This unit allows direct access to
the spare timer channel under
MSDOS and provides a high-resolu-
tion timer value that increments
approximately every 840ns, so is
ideal for obtaining short millisec-
ond or microsecond delay values.
However, I quickly discovered that
running the same code as a DOS
task under Windows gave very
erratic results.

To find out why Windows upsets
access to the PC timer I turned to
the Microsoft Developer Network
CDROM, where there is a good dis-
cussion of Windows timer services.
This makes clear the reasons why
such direct hardware access is not
possible. Windows itself is using
this timer at the highest privilege
level (ring 0) and has ‘virtualised’ it
causing accesses to its physical ad-
dresses to be trapped and to return
unpredictable values, however the
discussion goes on to show a legiti-
mate method for accessing timer
functions under Windows 3.1 or
later. The timer is handled by a
Windows device driver called the
VTD (Virtual Timer Device) and it
turns out that access to the VTD is
possible by using interrupt 2F, the
multiplex interrupt, which is de-
signed to provide a connection
between DOS applications or TSRs
and any Windows host.

To recap, this most tricky timing
situation occurs only when you
need to get accurate timing infor-
mation inside a BP7-compiled DOS
real or protected mode program
when it is being run under 16-bit or
32-bit Windows. If Windows is not
running, you can get at and ‘own’
the timer directly. So to get timer

information under all circum-
stances we have to do the
following.

From within the DOS program,
determine whether Windows is
running. A function is provided
using interrupt 2F for this. If
Windows is not running we can use
the timer directly, otherwise we
must only access the timer through
the Windows VTD (again using
interrupt 2F).

If we are compiling a 16-bit
Delphi target this technique still
works, but of course Windows will
always show up as present and all
timer access is via the VTD. 32-bit
Delphi targets are actually a lot
simpler in their access to the timer.
Before we look at the detail of the
code for each target, we need to
discuss where we are headed in
terms of presenting timer function-
ality, since it is 32-bit Delphi that
gives us some directions with this.

Looking at the Win32 API I was
very pleased to find that access to
the high-resolution timer is pro-
vided directly by two routines in
the Windows unit:

function
 QueryPerformanceCounter(
 var lpPerformanceCount:
 TLargeInteger): BOOL;
 stdcall;
function
 QueryPerformanceFrequency(
 var lpFrequency:
 TLargeInteger): BOOL;
 stdcall;

These are not at all well docu-
mented but give us all of the access
that we need to implement accu-
rate time measurement or delays.
They are really intended for the
implementation of program profil-
ing tools, where nanosecond reso-
lution is required, but are standard
within the API, allowing us to make
good use of them (even for
program profiling too, as we will
see later!).

Basically, you first call QueryPer-
formanceFrequency once to get a
timer resolution value of how many
times per second the timer counts.
You can later use this value with
repeated calls to QueryPerformance-
Counter which returns an actual

30 The Delphi Magazine Issue 22

timer value that increments at the
QueryPerformanceFrequency rate.
TLargeInteger is a 64-bit value that
ensures that it is a long time before
the count rolls over (some 1.5E13
seconds, or about 490,000 years in
fact, enough for several versions of
Delphi and Windows!). Interest-
ingly, although Microsoft have
given us a way of obtaining the
counts per second value of the
timer, all PC systems seem to
return 1,193,180 or 838.09ns, which
is the count rate of the spare timer
channel. Presumably this may be a
different value on other platforms
or perhaps even under future
versions of Windows.

It was the existence of these rou-
tines that provided the prototype
for the functions that I decided to
implement in my general purpose
high-resolution timer unit, so I set
about implementing these same
named functions to work under 16-
bit targets for Windows 3.1 and
MSDOS. The unit HIRESTMR.PAS
implements various fragments of
code depending on the target with
which it is compiled (there are vari-
ous conditional directives to con-
trol this) and within the unit
accesses to the timer are as
follows:
➣ 32-Bit Compiler: This is easy:

any requirement for the named
functions QueryPerformanceFre-
quency and QueryPerformance-
Counter causes a direct link with
these functions in the Win32 API
(defined in Delphi’s Windows
unit).

➣ 16-Bit Compiler (Delphi 1 or
BP7): For 16-bits, HIRESTMR.PAS
has some initialisation code
that attempts to call Windows
to determine if Windows is run-
ning and which version it is, and
then either calls the timer di-
rectly (if DOS is the only operat-
ing system) or calls the timer
via the Windows VTD driver. In
both cases, the timer value is
returned in a 64-bit form com-
patible with the QueryPerforman-
ceCounter Win32 API function.

The result of this is a general pur-
pose unit that gives us the same
functionality with 16-bit code as we
get with the Win32 API timer func-
tions. This basic timer capability
can then be used to create short
delays and to do other work as we
will see.

Interface To HIRESTMR.PAS
The interface section of this unit is
common to all targets and provides
some useful types and constants as
well as the actual timer and delay
procedures. See Listing 1.

At the start are some constants
of type TLargeInteger. This type is
defined in 32-bit Delphi but for 16-
bit targets we have defined it.
These are 64-bit integers that con-
tain copies of useful values that
describe the timer: its maximum
value (before it starts again at
zero), the number of counts per
second, and the count of the over-
head in calling it. This last value
may be important because on
slower systems running Windows

the time taken to get the timer
value from the Windows VTD
driver may be of significance. I
have measured times between 2us
and 5us on a Pentium 133 up to
around 50us on a 386SX-40.

Following on after these con-
stants are some Delay... routines
offering microseconds, millisec-
onds and seconds. Note that the
parameter type is very flexible with
these procedures: DelayUS is
passed a LongInt microseconds
value allowing a wide range, also
DelayS is passed a floating point
type allowing fractional seconds. It
must be stressed that, technically,
these Delay... procedures violate
the concept of a multi-tasking oper-
ating system such as Windows and
so should be used with care, how-
ever they are very useful where
short, accurate delays in the micro-
seconds and low millisecond range
are required, or where it is guaran-
teed that your application is the
only application running. Remem-
ber to check the effect on other
system I/O performance such as
networking, printing etc!

The final Windows support rou-
tines are exported in case they can
be of use elsewhere, but otherwise
they are only used internally.

Delay Procedures Detail
Each delay procedure is based on
a call to:

procedure WaitForElapsed(
 const AValue : TLargeInteger);

which repeatedly calls QueryPer-
formanceCounter until a value of
AValue or greater is obtained.
AValue is calculated at the start of
the delay from the current time
plus the required delay. For
example, the DelayUS procedure is
constructed as shown in Listing 2
(over the page).

Note the use of the constant
r_CounterCallOverhead. This con-
tains the number of timer counts
that will be lost during each call to
get the timer value and has been
determined once at the start of the
program. The minimum achievable
delay will be twice this value and so
this count is removed from the
required delay.

{ ** Timer definitions }
{ Definitions relating to the performance counter in use }
const
 { The max value before rollover. Default is -1 but
 MSDOS timer counter rolls over each midnight and will
 reprogram this value }
 r_CounterMaxValue : TLargeInteger = (QuadPart : -1);

 { The resolution which defaults in DOS and Win3 to about 0.8us,
 Delphi 2 32-bit will load this value too, in case
 it changes in the future }
 r_CountsPerSec : TLargeInteger = (QuadPart : 1193180);
 { The number of counter counts taken to call the performance
 counter }
 r_CounterCallOverhead : TLargeInteger = (QuadPart : 0);
procedure DelayUS(AValue : longint);
 { Delays this value using the performance counter }
procedure DelayMS(AValue : longint);
 { Delays this value using the performance counter }
procedure DelayS(const AValue : extended);
 { Delays this value using the performance counter }
{ ** Windows support routines }
const
 b_WindowsInstalled : boolean = False;
 w_WindowsVersion : word = 0;

➤ Listing 1

June 1997 The Delphi Magazine 31

Note that WaitForElapsed does
not call Yield or any other Windows
or Delphi message processing be-
cause the whole point of these
delay procedures is to implement
an accurate delay (under DOS too).
If you do need a ‘well behaved’
Delphi delay of (say) 5s, you could
use code like that in Listing 3. This
is not as neat as using a TTimer but
can be useful for in-line delays
where accuracy and neatness are
not a problem. Vary the 50ms delay
to vary the effect of the ‘holes’ this
will insert into Windows activity.

Timing In 16-Bit
As explained earlier, 16-bit mode
requires that we either call the
timer directly or via Windows
depending on whether we find
Windows running or not. If we have
only MSDOS running, the timer
channel is completely ours and we
must execute our own code to read
it in a form that gives us a 64-bit

timer value. The actual timer only
returns a 16-bit count value, so we
must do some additional work to
obtain a 64-bit value as shown in
Listing 4.

In MSDOS mode where there is
no Windows running, this code
does three main tasks. Firstly, at
the start of the program it puts the
timer into the required count mode
in case other applications have left
it in some arbitrary state. During
the program the procedure
QueryPerformanceCounter does the
work of returning a 64-bit timer
value’ and finally at the end of the
program, the timer default state is
restored.

The code for reading the timer is
based on the OPTIMER.PAS unit
but extends it to combine the 16-bit
timer value (incrementing every
840ns) with another 32-bit value
held in the BIOS data area that is
incremented on each overflow of
the timer. This produces a 48-bit
timer value which is returned as a
64-bit value with the high-order 16-
bits set to zero. The effect of this is

procedure DelayUS(AValue : longint);
{ Delays this value using the performance counter }
var r_Elapsed : TLargeInteger;
begin
 r_Elapsed.QuadPart := ((AValue * r_CountsPerSec.QuadPart) * 1e-6) -
 (r_CounterCallOverhead.LowPart * 2);
 If r_Elapsed.QuadPart < 0 then r_Elapsed.QuadPart := 0;
 WaitForElapsed(r_Elapsed);
end;

➤ Listing 2

procedure GoodDelphiDelay;
var I : integer;
begin
 for I := 1 to 100 do begin
 DelayMS(50);
 Application.ProcessMessages;
 end;
end;

➤ Listing 3

procedure InitializeTimerCounter;
{ Setup the timer chip to required mode
 Thanks to TurboPower inc for information in OPTIMER.PAS }
begin
 { mode 2, read/write channel 0}
 Port[$43] := $34; {00110100b}
 asm
 jmp @1 {delay}
 @1:
 end;
 Port[$40] := $00; {LSB = 0}
 asm
 jmp @2 {delay}
 @2:
 end;
 Port[$40] := $00; {MSB = 0}
end;
procedure RestoreTimerCounter;
{ Restore the timer chip to its normal state
 Thanks to TurboPower inc for information in OPTIMER.PAS }
begin {RestoreTimer}
 {select timer mode 3, read/write channel 0}
 Port[$43] := $36; {00110110b}
 asm
 jmp @1 {delay}
 @1:
 end;
 Port[$40] := $00; {LSB = 0}
 asm
 jmp @2 {delay}
 @2:
 end;
 Port[$40] := $00; {MSB = 0}
end;
procedure QueryMSDOSTimerCounter(Var AValue : TLargeInteger);
{ Returns the value of the hi perf counter.
 Thanks to TurboPower inc for information in OPTIMER.PAS }
begin
 asm
 cli {Disable interrupts}
 mov dx,$20 {Address PIC ocw3}
 mov al,$0A {Ask to read irr}
 out dx,al
 mov al,$00 {Latch timer 0}
 out $43,al
 in al,dx {Read irr}
 mov di,ax {Save it in DI}
 in al,$40 {Counter —> bx}
 mov bl,al {LSB in BL}
 in al,$40
 mov bh,al {MSB in BH}
 not bx {Need ascending counter}

 in al,$21 {Read PIC imr}
 mov si,ax {Save it in SI}
 mov al,$0FF {Mask all interrupts}
 out $21,al
 mov ax,$40 { delay }
 mov ax,$40 {read low word of time}
 mov es,ax {from BIOS data area}
 mov dx,es:[$6C]
 mov cx,es:[$6E]{result now as CX:DX:BX}
 mov ax,si {Restore imr from SI}
 out $21,al
 sti {Enable interrupts}
 mov ax,di {Retrieve old irr}
 test al,$01 {Counter hit 0?}
 jz @done {Jump if not}
 cmp bx,$FF {Counter > $FF?}
 ja @done {Done if so}
 add dx,1 {Else count int req.}
 adc cx,0 {ripple carry}
 @done:
 les di, AValue
 mov es:[di], bx {lsw}
 mov es:[di+2],dx
 mov es:[di+4],cx
 mov ax,0
 mov es:[di+6],ax {msw}
 end;
end;
var
 SaveExitProc : pointer;
{$F+}
procedure OurExitProc;
{ Restore timer to its original state}
begin
 ExitProc := SaveExitProc;
 RestoreTimerCounter;
end;
{$F-}
procedure InitialiseMSDOSTimerCounter;
{ Called at start to setup timer }
begin
 {set up our exit handler}
 SaveExitProc := ExitProc;
 ExitProc := @OurExitProc;
 {reprogram the timer chip}
 InitializeTimerCounter;
 { Set the counter max value }
 With r_CounterMaxValue do begin
 LowPart := $00B0FFFF;
 HighPart := $18;
 end;
end;

➤ Listing 4

32 The Delphi Magazine Issue 22

that our MSDOS timer value rolls
over more quickly outside
Windows than when Windows is
running, although this is academic
since HIRESTMR.PAS includes
code to take care of the roll-over
anyway.

Incidentally, note that there are
some 32-bit 386 instructions in this
code so unfortunately the code will
not run on 286 or earlier proces-
sors without some modification: I
did not consider that this was a
severe limitation.

If we detect that we are running
with Windows installed, the proce-
dures shown in Listing 5 are used.
QueryWindowsVTDCounter is the
equivalent of QueryPerformance-
Counter implemented for 16-bit
Windows. This derives a VTDAd-
dress once, which is the entry point
of the Windows VTD timer device
driver obtained by using the 2F in-
terrupt. On all subsequent calls to
the timer, this address is used to-
gether with AX=100h to get a 64-bit
count value passed out as AValue.

Miscellaneous Procedures
There are some other less impor-
tant routines I’ve exported in
HIRESTMR.PAS. BeginCriticalSec-
tion and EndCriticalSection are
useful calls made available by the
2F interrupt that allow 16-bit Win-
dows to be temporarily suspended
for a short period while some time-
critical activity is taking place. It
would appear that these are the
forerunners of the thread functions
in Win32. There should be an equal
number of calls to Begin and Endand
during the intermediate section
Windows messaging is suspended,
although interrupt activity contin-
ues. I have used these procedures
to get a more controlled measure-
ment of the time overhead in
calling QueryPerformanceCounter.

Demonstration
You are likely to find HIRESTMR.PAS
useful for all of the Borland Pascal
and Delphi products, so a simple
demonstration program has been
created using each compiler and
included on the disk, from a single
source file DEMO.PAS. You may
find a Delphi project called
DEMO.PAS confusing at first, but
the program does not use any VCL
components and can be compiled
happily as a *.PAS file instead of a
*.DPR file. Table 1 shows the file
names. A VCL-based Delphi demo
is also provided as DELDEMO.DPR.
This has two push buttons to read
timer values and to show the
difference (Figure 1).

Limitations
There are some limitations with
the HIRESTMR unit of which you
should be aware. The delays are

➤ Figure 1

function GetDeviceEntryPointAddress(ADeviceID : word) : pointer;
{ Returns the entry point for this specified device driver }
begin
 If not b_WindowsInstalled then
 GetDeviceEntryPointAddress := nil
 else
 asm
 mov bx, ADeviceID { Device identifier }
 mov ax, 1684h { Get Device Entry Point Address }
 int 2Fh { multiplex interrupt }
 mov word ptr @Result, di
 mov word ptr @Result+2, es
 end;
end;
function GetVTDDeviceEntryPointAddress : pointer;
{ Returns the entry point for the virtual timer device driver }
begin
 GetVTDDeviceEntryPointAddress := GetDeviceEntryPointAddress(5 {VTD identifier});
end;
const VTDAddress : pointer = nil;
procedure QueryWindowsVTDCounter(var AValue : TLargeInteger);
{ Returns the value of the hi perf counter }
begin
 If VTDAddress = nil then
 VTDAddress := GetVTDDeviceEntryPointAddress;
 If VTDAddress = nil then
 RunError; {No VTD installed - needs windows}
 asm
 mov ax,$100
 call VTDAddress
 db $66, $50 {push eax}
 db $58 {pop ax}
 db $5B {pop bx}
 db $66, $52 {push edx}
 db $59 {pop cx}
 db $5A {pop dx}
 les di, AValue
 mov es:[di+0], ax {w0 lsw}
 mov es:[di+2], bx {w1 }
 mov es:[di+4], cx {w2 }
 mov es:[di+6], dx {w3 msw}
 end;
end;

➤ Listing 5

Compiler EXE file for demo

BP7 16-bit DOS real mode DEMO_RL.EXE

BP7 16-bit DOS protected mode DEMO_PR.EXE

Delphi 1 16-bit Windows 3 or 95 DEMO_W16.EXE

Delphi 2 32-bit Windows 95 DEMO_W32.EXE

➤ Table 1: Demo programs on this month’s disk

June 1997 The Delphi Magazine 33

typically useful down to around
50us. For example, on a Pentium
P133, a 100us delay is within about
5%. As the speed of the machine
slows or the delay drops below
100us the time overhead to execute
the code and to get the timer value
becomes significant and up to 50us
should be allowed on older slower
386 machines. Note that the demo
EXE files report this overhead time,
so if you need to assess it, run it on
the slowest machine of interest.

In the same way, the delay calcu-
lations are made using floating
point values so a co-processor is
desirable to keep the overhead
time down. If a co-processor is not
available, this will not prevent the
routines from working, it only in-
creases the minimum delay possi-
ble but again, 100us delays should
still be within 30% to 50%.

Finally, remember that other
system activity such as interrupts
and dynamic RAM refresh will al-
ways be running and that this activ-
ity will cause inaccuracies in the
delays. Normally this is not a prob-
lem, because the use of these de-
lays is to obtain a guaranteed
minimum time (for example for a
hardware measurement voltage to
settle). If you need absolute timing
accuracy, call QueryPerformance-
Counter directly: we will see an
example of this in the next section
where this timer is used for
program timing.

Low Level Program Profiling
Since I am often concerned with the
interface between software and
hardware in real-time control
situations, it is of great interest to
understand the timing charac-
teristics of an application within a
certain part of the program.
Borland’s Turbo Profiler is a tool
that makes these assessments by
monitoring the program’s execu-
tion path and recording source
code line numbers against times,
allowing timing to be viewed for
each source code line. Unfortu-
nately, I have had difficulty in using
this tool with large applications
and so it has been less useful than
I would have liked. To get around
this I have developed a low-level
profiling tool that others may find

useful and which is linked closely
to the high-resolution timing capa-
bility in HIRESTMR.PAS. It allows
programs to be assessed by ob-
serving their actual timing, or by
using hardware I/O signals. All
code is in the unit PROFIT.PAS.

Profiling Using I/O Signals
The simplest mode of the profiler
unit PROFIT.PAS is to show execu-
tion of the program at a chosen
point by using the parallel printer
port as a collection of I/O signals.
The main procedures for this are
declared at the start of the unit as:

procedure PPPRInitialise(
 APortAddress : word);
 { Opens the printer port
 setting defaults }
procedure PPPRSetAllBits;
 { Sets the port to all
 data bits = 1 }
procedure PPPRClearAllBits;
 { Sets the port to all
 data bits = 0 }

A typical use of these procedures
would be as follows. At the start of
the program call

PPPRInitialise(
 <Printer port address>)

to set the printer port data lines to
a defined state. Then, around the
code to be monitored place a call
to PPPRSetAllBits and PPPRClear-
AllBits. When the program is run,
all printer port data lines will
change at these points and this ac-
tion can be inspected using a stor-
age oscilloscope or timer-counter
to get a high degree of accuracy.
The necessary pin connections can
be seen listed in the unit.

The advantage of this I/O
method of profiling is that the code
required to change the printer port
lines is very short and so does not
affect the timing of the actual
program. The conditional define
PrinterPortProfiler is required to
activate this code allowing these
calls to be left in the program but
inactive without the definition.

Take care to check your printer
port I/O address. It will almost
certainly be one of $378, $278 or
$3BC, but it must be passed to

PPPRInitialise or you will get no
output.

It may seem that observing I/O
signals with an oscilloscope is a
rather difficult way to debug a pro-
gram’s execution, but in fact you
can often extract more information
in this way than can be gained from
a simple timing dump. For example
when a section of code is executed
several times, the display will often
appear as shown in Figure 2, show-
ing a minimum time T1 and a maxi-
mum time T2. The difference
between T2 and T1 is a time jitter
caused either by a different execu-
tion path (eg changed program
data) or some other system activ-
ity such as interrupts that oc-
curred during T2 but not T1. Being
able to view this jitter is a powerful
aid in assessing the program activ-
ity and provides information that is
much less clear when presented as
numeric timing values. Another
use of I/O profiling is to mark both
the occurrence of an external event
(for example a button push) and
the response of the program to that
event. Often interrupts are in use
for such tasks and a traditional pro-
filer cannot be used to observe the
relationship between an external
hardware event and the program
response. Using these I/O signals,
an oscilloscope can be triggered
from the external hardware event
and the trace can show the pro-
gram response. A display as above
will be seen which clearly shows
both the absolute response time of
the program together with how it
may vary between repeated
events. I’ve used this technique to
diagnose software problems that
were causing external events to be
‘missed’ due to a program’s
‘inattention’ for short periods.

Finally, there are some addi-
tional I/O routines for the printer
port in PROFIT.PAS that support

➤ Figure 2

34 The Delphi Magazine Issue 22

using the printer port as an input.
This can be useful for suspending
your program until an external
event takes place.

The VCL-based Delphi-only dem-
onstration DELDEMO.DPR has a
button marked 10s burst of I/O
pulses (Figure 1) which illustrates
the working of these I/O signals via
your printer port.

Profiling Using
Timing Information
Having created the timing unit
HIRESTMR.PAS it was an obvious
move to extend the profiler to offer
timing information at the chosen
program points as well as I/O signal
activity. PROFIT.PAS has a second
very simple section that imple-
ments a simple timing profiler,
shown in Listing 6.

These procedures are all that are
necessary to write timing informa-
tion from your program at specific
points. An example of using this is
seen in the HIRESTMR demo pro-
gram DEMO.PAS which writes ac-
tual time values of the example
delays to a disk file.

At the start of your program call

TMPROpen(<filename>, MaxItems)

passing the name of a file that will
be created with the timing informa-
tion and the maximum number of
timing items that will be recorded
in a heap-based memory array. At
a suitable point in the program,
simply call TMPRMark(RefNum), pass-
ing a code that will define this

point. The code simply allows you
to see it in the file easily. Use as
many of these points as you like
until you are likely to approach
MaxItems when the program is run.
Finally, before your program exits,
call TMPRClose to flush the memory
array to the disk file. A typical file
will look like Listing 7.

The Ref column is the code that
you assigned to TMPRMark, Abs is the
absolute time from the start and
Diff is the incremental time be-
tween successive marks. Resolu-
tion is to better than 1us. The dump
in Listing 7 (from DEMO.PAS)
shows the effect of creating several
1 second delays out of repeated
calls to shorter delays. The values
at references 1, 3 and 5 show a
close agreement to 1000ms, but the
final timing at reference 7 shows

1.64 seconds where a 1s delay was
attempted from 100,000 separate
10us delays, with an obvious code
overhead that increased the
theoretical 10us.

The use of QueryPerformance-
Counter is quite obvious within the
PROFIT.PAS unit and this profiling
technique works on all of the
Pascal compilers from BP7 through
to Delphi 2 (I’ve not been able to
check it with Delphi 3 yet). With
this implementation you are lim-
ited to about 6000 recorded items,
but otherwise you should find it
quite useful. As with the I/O pro-
filer, a conditional definition is re-
quired to ‘enable’ the code, so all
calls to these profiling procedures
can be left in the program and are
inactive without the definition.

Conclusion
I hope that you find these units
useful. If you have any comments
or suggestions please get in touch.

Brian Frost is the principal of
Dorset Design and Developments,
working in electronics as well as
software development, and can
be contacted by email as
 bfrost@cix.compulink.co.uk

OPTIMER
Thanks to TurboPower Inc for the
information about accessing the
PC timer from their freeware
OpTimer unit which is included on
this month’s disk.

procedure TMPROpen(const AFileName : string; AMaxItems : integer);
 { Opens the timing profiler }
procedure TMPRStart;
 { Resets the timing profiler }
procedure TMPRMark(ACode : integer);
 { Marks this profile point }
procedure TMPRClose;
 { Closes the timing profiler }

➤ Listing 6

Timing profile dump
Ref: 0, Abs (ms): 0.1198, Diff (ms): 0.0000
Ref: 1, Abs (ms):1000.1768, Diff (ms):1000.0570
Ref: 2, Abs (ms):1000.5330, Diff (ms): 0.3562
Ref: 3, Abs (ms):1999.2809, Diff (ms): 998.7479
Ref: 4, Abs (ms):1999.5499, Diff (ms): 0.2690
Ref: 5, Abs (ms):2999.6405, Diff (ms):1000.0905
Ref: 6, Abs (ms):3000.1106, Diff (ms): 0.4702
Ref: 7, Abs (ms):4639.2573, Diff (ms):1639.1467

➤ Listing 7

June 1997 The Delphi Magazine 35

	PC Timing Options
	DOS Real And Protected Mode
	Windows
	General Purpose High-Res Timing
	Interface To HIRESTMR.PAS
	Delay Procedures Detail
	Timing In 16-Bit
	Miscellaneous Procedures
	Demonstration
	Limitations
	Low Level Program Profiling
	Profiling Using I/O Signals
	Profiling Using Timing Information
	Conclusion
	OPTIMER

